K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Áp dụng BĐT Cauchy-SChwarz ta có:

\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)

\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)

Dấu "=" bạn tự nghiên cứu nhé :D

9 tháng 9 2018

DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.

29 tháng 7 2017

Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta lại có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)

\(=\frac{a^2}{a^2-ab+bc-ca}+\frac{b^2}{b^2-ab-bc+ca}+\frac{c^2}{c^2+ab-bc-ca}\)

\(=\frac{a^2}{\left(b-a\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(c-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(=-\left(\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\left(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=-\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

19 tháng 12 2022

Ai có thể giải thích cho mình đoạn a^2/(a^2-ab+bc-ca) đc ko mình cảm ơn

2 tháng 12 2017

(a+b+c)2=a2+b2+c2

=>2(ab+bc+ac)=0

=>ab+bc+ac=0

=> bc=-ab-ac

=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)

Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)

                     \(\frac{c^2}{c^2+2ab}=...\)

=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...

                                         =\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

                                        =1

Đặt M = (a^2+b^2-c^2)/2ab  + (b^2+c^2-a^2)/2bc + c^2+a^2-b^2/2ca

Ta có M-1=\(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}-1.\)

=>M-1=\(\frac{c\left(a^2+b^2-c^2\right)+a\left(b^2+c^2-a^2\right)+b\left(c^2+a^2-b^2\right)-2abc}{2abc}\)

Vì a,b,c là độ dài 3 cạnh tam giác => a2+b2\(\ge\)c2,b2+c2\(\ge\)a2,c2+a2\(\ge\)b2

Vậy M-1\(\ge\)0=> M\(\ge\)1(đpcm)

18 tháng 4 2019

bt \(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2+b^2}{2ca}\)

9 tháng 2 2019

\(a^2+b^2+c^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow ab+ac+bc=0\)

\(\Leftrightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ab-ac\end{cases}}\)

Ta có : \(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

CMTT ta có : \(\hept{\begin{cases}b^2+2ac=\left(b-a\right)\left(b-c\right)\\c^2+2ab=\left(c-a\right)\left(c-b\right)\end{cases}}\)

Thay vào A ta được :

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(A=\frac{b-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-a+c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=0\)

16 tháng 4 2019

Ta chứng minh bất đẳng thức: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)  (a,b,c,x,y,z dương)    (Hệ quả của bất đẳng thức Cauchy-Schwarz (Bunyakovsky))

\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\sqrt{y}^2+\sqrt{z^2}\right]\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Ta có:

\(A=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(2A=\frac{2bc}{a^2+2bc}+\frac{2ca}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)

\(=\frac{a^2+2bc-a^2}{a^2+2bc}+\frac{b^2+2ca-b^2}{b^2+2ac}+\frac{c^2+2ab-c^2}{c^2+2ab}\)

\(=3-\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)\)

\(\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=3-1=2\)

=> A<=1 

19 tháng 7 2020

a,b,c dương 

Ta viết lại BĐT thành: \(\frac{1}{\frac{a^2}{bc}+2}+\frac{1}{\frac{b^2}{ca}+2}+\frac{1}{\frac{c^2}{ab}+2}\le1\)

Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\Rightarrow\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta cần chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\le1\)

Xét biểu thức\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\) \(\frac{\left(y+2\right)\left(z+2\right)+\left(z+2\right)\left(x+2\right)+\left(x+2\right)\left(y+2\right)}{\left(x+2\right)\left(y+2\right)\left(z+2\right)}\)

\(=\frac{\left(yz+2y+2z+4\right)+\left(zx+2z+2x+4\right)+\left(xy+2x+2y+4\right)}{\left(xy+2x+2y+4\right)\left(z+2\right)}\)

\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+2\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(\le\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{xyz+3\sqrt{\left(xyz\right)^2}+\left(xy+yz+zx\right)+4\left(x+y+z\right)+8}\)\(=\frac{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}{\left(xy+yz+zx\right)+4\left(x+y+z\right)+12}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c